Regularity Theorems and Energy Identities for Dirac-harmonic Maps

نویسندگان

  • QUN CHEN
  • JIAYU LI
  • GUOFANG WANG
چکیده

We study Dirac-harmonic maps from a Riemann surface to a sphere Sn. We show that a weakly Dirac-harmonic map is in fact smooth, and prove that the energy identity holds during the blow-up process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Dirac Equations on Riemann Surfaces

We develop analytical methods for nonlinear Dirac equations. Examples of such equations include Dirac-harmonic maps with curvature term and the equations describing the generalized Weierstrass representation of surfaces in three-manifolds. We provide the key analytical steps, i.e., small energy regularity and removable singularity theorems and energy identities for solutions.

متن کامل

Regularity of Dirac-harmonic maps

For any n-dimensional compact spin Riemannian manifold M with a given spin structure and a spinor bundle ΣM , and any compact Riemannian manifold N , we show an ǫ-regularity theorem for weakly Dirac-harmonic maps (φ, ψ) : M ⊗ΣM → N ⊗ φ∗TN . As a consequence, any weakly Dirac-harmonic map is proven to be smooth when n = 2. A weak convergence theorem for approximate Dirac-harmonic maps is establi...

متن کامل

Liouville Theorems for Dirac - Harmonic Maps

We prove Liouville theorems for Dirac-harmonic maps from the Euclidean space Rn, the hyperbolic space Hn and a Riemannian manifold Sn (n ≥ 3) with the Schwarzschild metric to any Riemannian manifold N .

متن کامل

Regularity for weakly Dirac-harmonic maps to hypersurfaces

We prove that a weakly Dirac-harmonic map from a Riemann spin surface to a compact hypersurface N ⊂ R is smooth. 2000 Mathematics Subject Classification: 58J05, 53C27.

متن کامل

Existence of positive solutions of a class of semilinear elliptic systems

Abstract: By a compactness argument, it was shown that, the boundary regularity theorems of Schoen-Uhlenbeck [A regularity theory for harmonic maps. J. Differential Geom. 17 (1982), no. 2, 307–335] and Jost-Meier [Boundary regularity for minima of certain quadratic functionals. Math. Ann. 262 (1983), no. 4, 549–561] are uniform in the domains, boundary data, and the energy. The resulting estima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008